|
Important Classes of Categories
|
ここでは, 圏に様々な形容詞を付けたものを集めた。 ある性質をみたす圏の class であることもあるし, monoidal category
のように圏に構造を付加したものであることもある。 整理しないで, 思い付いたもの (目にしたもの) を並べてみた。
圏の概念を一般化したものについては, 次にまとめた。
References
-
[Ber22]
-
Clemens Berger. “Moment categories and operads”. In: Theory Appl.
Categ. 38 (2022), Paper No. 39, 1485–1537. arXiv: 2102.00634. url:
https://doi.org/10.5486/pmd.1991.38.1-2.06.
-
[BS21]
-
Clark Barwick and Christopher Schommer-Pries. “On the unicity
of the theory of higher categories”. In: J. Amer. Math.
Soc. 34.4 (2021), pp. 1011–1058. arXiv: 1112 . 0040. url:
https://doi.org/10.1090/jams/972.
-
[CL02]
-
J. R. B. Cockett
and Stephen Lack. “Restriction categories. I. Categories of partial
maps”. In: Theoret. Comput. Sci. 270.1-2 (2002), pp. 223–259. url:
http://dx.doi.org/10.1016/S0304-3975(00)00382-0.
-
[CLW93]
-
Aurelio Carboni, Stephen Lack,
and R. F. C. Walters. “Introduction to extensive and distributive
categories”. In: J. Pure Appl. Algebra 84.2 (1993), pp. 145–158. url:
http://dx.doi.org/10.1016/0022-4049(93)90035-R.
-
[DR22]
-
I. Di Liberti and J. Rosický. “Enriched locally generated categories”.
In: Theory Appl. Categ. 38 (2022), Paper No. 17, 661–683. arXiv:
2009.10980.
-
[KKO13]
-
Seok-Jin Kang, Masaki Kashiwara, and
Se-jin Oh. “Supercategorification of quantum Kac-Moody algebras”.
In: Adv. Math. 242 (2013), pp. 116–162. arXiv: 1206.5933. url:
https://doi.org/10.1016/j.aim.2013.04.008.
-
[LS04]
-
Stephen
Lack and Paweł Sobociński. “Adhesive categories”. In: Foundations
of software science and computation structures. Vol. 2987. Lecture
Notes in Comput. Sci. Berlin: Springer, 2004, pp. 273–288. url:
http://dx.doi.org/10.1007/978-3-540-24727-2_20.
-
[Mur18]
-
Daniel Murfet. “The cut operation on matrix factorisations”. In: J.
Pure Appl. Algebra 222.7 (2018), pp. 1911–1955. arXiv: 1402.4541.
url: https://doi.org/10.1016/j.jpaa.2017.08.014.
-
[Orz72]
-
G. Orzech. “Obstruction theory in algebraic categories. I, II”. In: J.
Pure Appl. Algebra 2 (1972), 287–314, ibid. 2 (1972), 315–340. url:
https://doi.org/10.1016/0022-4049(72)90008-4.
-
[Sel07a]
-
P. Selinger, ed. Proceedings of the 3rd International Workshop
on Quantum Programming Languages (QPL 2005). Vol. 170.
Electronic Notes in Theoretical Computer Science. Held at DePaul
University, Chicago, IL, June 30–July 1, 2005. Elsevier Science B.V.,
Amsterdam, 2007, front matter+199.
-
[Sel07b]
-
Peter Selinger. “Dagger compact closed categories and completely
positive maps”. In: Electronic Notes in Theoretical computer science
170 (2007), pp. 139–163.
-
[Yau20]
-
Donald Yau. Involutive category theory. Vol. 2279. Lecture Notes
in Mathematics. Springer, Cham, [2020] ©2020, pp. xii+243. isbn:
978-3-030-61203-0; 978-3-030-61202-3. url:
https://doi.org/10.1007/978-3-030-61203-0.
|
|