Formal power series は, 代数的トポロジーでも重要な道具である。 例えば, complex oriented cohomology
theory に付随する formal group law として現れる。
その辺のことを勉強しているときに, Ray の [Ray87] で umbral calculus というものを知った。 Umbral
calculus が何であるかを知るには, Di Bucchianico と Loeb の survey [DL95] を見るのが手っ取り早い, と思う。
本文自体は 9ページしかないが, 506もの文献を挙げているので34ページになっている。
それによると, umbral calculus とは単項式 \(x^0,x^1,\ldots , x^n,\ldots \) と似た性質を持つ多項式の列 \(p_{0},p_{1},\ldots , p_{n},\ldots \) の研究である。
例えば, \((x)_{n}=x(x-1)\cdots (x-n+1)\) については, 2項係数の類似や, Taylor 展開の類似が成り立つことが知られている。ただし, Taylor 展開では微分 \(\frac{d}{dx}\) を
forward difference operator \((\Delta f)(x)=f(x+1)-f(x)\) に変えないといけないが。
他に, 最初に読む文献としては, Roman の本 [Rom84] や Roman と Rota の [RR78] などがある。
基本的に formal power series と関係していることは, umbral calculus が使えると思ってよいようである。 Di
Bucchianico と Loeb の survey [DL95] には次のような応用が挙げられている。
他にも numerical analysis, 統計, 確率論, invariant theory などへの応用もあるらしい。
また, 彼等の survey に載っていないこととして次のようなものもある。
一般化や変種も Di Bucchianico と Loeb の survey に書かれている。
- Sheffer polynomial から generalized Appell polynomial (Boas-Buck
polynomial) への拡張 (Viskov の [Vis75])
- entire function への拡張 (Grabiner の [Gra88; Gra89])
- 多変数, そして無限変数への拡張 (Di Bucchianico, Loeb, Rota の [DLR98])
- \(x^{-1}\) や \(\log x\) を含む場合への拡張 (Loeb の [Loe89; LR89; Loe91])
- 多項式環上の linear operator への拡張 (Kurbanov と Maksimov の [KM86])
- 正標数への拡張 (Van Hamme の [Van92] や Verdoodt [Ver96; Ver98])
References
-
[Che93]
-
William Y. C. Chen. “The theory of
compositionals”. In: Discrete Math. 122.1-3 (1993), pp. 59–87. url:
https://doi.org/10.1016/0012-365X(93)90287-4.
-
[Cho88]
-
Frank M. Cholewinski. The finite calculus associated with
Bessel functions. Vol. 75. Contemporary Mathematics. American
Mathematical Society, Providence, RI, 1988, pp. xii+122. isbn:
0-8218-5083-0. url: https://doi.org/10.1090/conm/075.
-
[DL95]
-
A. Di Bucchianico and D. Loeb. “A selected survey of umbral calculus”.
In: Electron. J. Combin. 2 (1995), Dynamic Survey 3, 28. url: http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS3.
-
[DLR98]
-
Alessandro Di Bucchianico, Daniel E. Loeb, and Gian-Carlo Rota.
“Umbral calculus in Hilbert space”. In: Mathematical essays in honor
of Gian-Carlo Rota (Cambridge, MA, 1996). Vol. 161. Progr. Math.
Birkhäuser Boston, Boston, MA, 1998, pp. 213–238.
-
[Gra88]
-
Sandy Grabiner. “Convergent expansions and bounded operators in
the umbral calculus”. In: Adv. in Math. 72.1 (1988), pp. 132–167.
url: https://doi.org/10.1016/0001-8708(88)90020-5.
-
[Gra89]
-
Sandy Grabiner. “Using Banach algebras to do analysis with the
umbral calculus”. In: Conference on Automatic Continuity and
Banach Algebras (Canberra, 1989). Vol. 21. Proc. Centre Math.
Anal. Austral. Nat. Univ. Austral. Nat. Univ., Canberra, 1989,
pp. 170–185.
-
[JR79]
-
S. A. Joni and G.-C. Rota. “Coalgebras and bialgebras in
combinatorics”. In: Stud. Appl. Math. 61.2 (1979), pp. 93–139.
-
[Kho90]
-
Alexander Nickolaevich Kholodov. “The umbral calculus and
orthogonal polynomials”. In: Acta Appl. Math. 19.1 (1990), pp. 1–54.
-
[KM86]
-
S. G. Kurbanov and V. M. Maksimov. “Mutual decompositions of
differential operators and operators of divided difference”. In: Dokl.
Akad. Nauk UzSSR 4 (1986), pp. 8–9.
-
[Loe89]
-
Daniel Elliott Loeb. The iterated logarithmic algebra. Thesis
(Ph.D.)–Massachusetts Institute of Technology. ProQuest LLC, Ann
Arbor, MI, 1989, (no paging).
-
[Loe90]
-
Daniel E. Loeb. “Sequences of symmetric functions of binomial
type”. In: Stud. Appl. Math. 83.1 (1990), pp. 1–30. url:
https://doi.org/10.1002/sapm19908311.
-
[Loe91]
-
Daniel E. Loeb. “The iterated
logarithmic algebra”. In: Adv. Math. 86.2 (1991), pp. 155–234. url:
https://doi.org/10.1016/0001-8708(91)90041-5.
-
[LR89]
-
Daniel E. Loeb and Gian-Carlo Rota. “Formal power series of
logarithmic type”. In: Adv. Math. 75.1 (1989), pp. 1–118. url:
https://doi.org/10.1016/0001-8708(89)90079-0.
-
[Mei34]
-
J. Meixner. “Orthogonale Polynomsysteme Mit Einer Besonderen
Gestalt Der Erzeugenden Funktion”. In: J. London Math. Soc. 9.1
(1934), pp. 6–13. url: https://doi.org/10.1112/jlms/s1-9.1.6.
-
[MR70]
-
Ronald Mullin and Gian-Carlo Rota. “On the foundations of
combinatorial theory. III. Theory of binomial enumeration”. In: Graph
Theory and its Applications (Proc. Advanced Sem., Math. Research
Center, Univ. of Wisconsin, Madison, Wis., 1969). Academic Press,
New York, 1970, 167–213 (loose errata).
-
[NS82]
-
Warren Nichols and Moss Sweedler. “Hopf
algebras and combinatorics”. In: Umbral calculus and Hopf algebras
(Norman, Okla., 1978). Vol. 6. Contemp. Math. Amer. Math. Soc.,
Providence, R.I., 1982, pp. 49–84.
-
[Ray87]
-
Nigel Ray. “Symbolic calculus: a 19th century approach to \(M\mathrm{U}\) and
BP”. In: Homotopy theory (Durham, 1985). Vol. 117. London Math.
Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 1987,
pp. 195–238.
-
[Ray88]
-
Nigel Ray. “Umbral calculus, binomial enumeration and chromatic
polynomials”. In: Trans. Amer. Math. Soc. 309.1 (1988), pp. 191–213.
url: http://dx.doi.org/10.2307/2001165.
-
[Rob10]
-
Thomas J. Robinson. “Formal calculus and umbral calculus”. In:
Electron. J. Combin. 17.1 (2010), Research Paper 95, 31. arXiv:
0912.0961. url: http://www.combinatorics.org/Volume_17/Abstracts/v17i1r95.html.
-
[Rom84]
-
Steven Roman. The umbral calculus. Vol. 111. Pure and Applied
Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New York, 1984, pp. x+193. isbn: 0-12-594380-6.
-
[RR78]
-
Steven M. Roman and Gian-Carlo Rota. “The umbral calculus”. In:
Advances in Math. 27.2 (1978), pp. 95–188.
-
[RW88]
-
Nigel Ray and Colin Wright. “Colourings and partition types: a
generalised chromatic polynomial”. In: vol. 25. B. Eleventh British
Combinatorial Conference (London, 1987). 1988, pp. 277–286.
-
[SVY97]
-
D. Senato, A. Venezia, and J. Yang. “Möbius polynomial
species”. In: Discrete Math. 173.1-3 (1997), pp. 229–256. url:
https://doi.org/10.1016/S0012-365X(96)00133-1.
-
[Uen88]
-
Kazuo Ueno. “Umbral calculus and
special functions”. In: Adv. in Math. 67.2 (1988), pp. 174–229. url:
https://doi.org/10.1016/0001-8708(88)90040-0.
-
[Uen90]
-
Kazuo Ueno. “Hypergeometric series formulas through operator
calculus”. In: Funkcial. Ekvac. 33.3 (1990), pp. 493–518. url:
http://www.math.kobe-u.ac.jp/~fe/xml/mr1086774.xml.
-
[Van92]
-
Lucien Van Hamme. “Continuous operators which commute with
translations, on the space of continuous functions on \(\Z _p\)”. In: \(p\)-adic
functional analysis (Laredo, 1990). Vol. 137. Lecture Notes in Pure
and Appl. Math. Dekker, New York, 1992, pp. 75–88.
-
[Ver96]
-
Ann Verdoodt. “\(p\)-adic \(q\)-umbral
calculus”. In: J. Math. Anal. Appl. 198.1 (1996), pp. 166–177. url:
https://doi.org/10.1006/jmaa.1996.0074.
-
[Ver98]
-
Ann Verdoodt. “Non-Archimedean umbral calculus”. In: Ann. Math.
Blaise Pascal 5.1 (1998), pp. 55–73. url:
http://www.numdam.org/item?id=AMBP_1998__5_1_55_0.
-
[Vis75]
-
O. V. Viskov. “Operator characterization of generalized Appell
polynomials”. In: Dokl. Akad. Nauk SSSR 225.4 (1975), pp. 749–752.
-
[WR86]
-
Brian G. Wilson and Forrest J. Rogers. “Umbral calculus and the
theory of multispecies nonideal gases”. In: Phys. A 139.2-3 (1986),
pp. 359–386. url:
https://doi.org/10.1016/0378-4371(86)90126-3.
|