Umbral Calculus

Formal power series は, 代数的トポロジーでも重要な道具である。 例えば, complex oriented cohomology theory に付随する formal group law として現れる。

その辺のことを勉強しているときに, Ray の [Ray87] で umbral calculus というものを知った。 Umbral calculus が何であるかを知るには, Di Bucchianico と Loeb の survey [DL95] を見るのが手っ取り早い, と思う。 本文自体は 9ページしかないが, 506もの文献を挙げているので34ページになっている。

それによると, umbral calculus とは単項式 \(x^0,x^1,\ldots , x^n,\ldots \) と似た性質を持つ多項式の列 \(p_{0},p_{1},\ldots , p_{n},\ldots \) の研究である。

例えば, \((x)_{n}=x(x-1)\cdots (x-n+1)\) については, 2項係数の類似や, Taylor 展開の類似が成り立つことが知られている。ただし, Taylor 展開では微分 \(\frac{d}{dx}\) を forward difference operator \((\Delta f)(x)=f(x+1)-f(x)\) に変えないといけないが。

他に, 最初に読む文献としては, Roman の本 [Rom84] や Roman と Rota の [RR78] などがある。

基本的に formal power series と関係していることは, umbral calculus が使えると思ってよいようである。 Di Bucchianico と Loeb の survey [DL95] には次のような応用が挙げられている。

他にも numerical analysis, 統計, 確率論, invariant theory などへの応用もあるらしい。

また, 彼等の survey に載っていないこととして次のようなものもある。

一般化や変種も Di Bucchianico と Loeb の survey に書かれている。

  • Sheffer polynomial から generalized Appell polynomial (Boas-Buck polynomial) への拡張 (Viskov の [Vis75])
  • entire function への拡張 (Grabiner の [Gra88; Gra89])
  • 多変数, そして無限変数への拡張 (Di Bucchianico, Loeb, Rota の [DLR98])
  • \(x^{-1}\) や \(\log x\) を含む場合への拡張 (Loeb の [Loe89; LR89; Loe91])
  • 多項式環上の linear operator への拡張 (Kurbanov と Maksimov の [KM86])
  • 正標数への拡張 (Van Hamme の [Van92] や Verdoodt [Ver96; Ver98])

References

[Che93]

William Y. C. Chen. “The theory of compositionals”. In: Discrete Math. 122.1-3 (1993), pp. 59–87. url: https://doi.org/10.1016/0012-365X(93)90287-4.

[Cho88]

Frank M. Cholewinski. The finite calculus associated with Bessel functions. Vol. 75. Contemporary Mathematics. American Mathematical Society, Providence, RI, 1988, pp. xii+122. isbn: 0-8218-5083-0. url: https://doi.org/10.1090/conm/075.

[DL95]

A. Di Bucchianico and D. Loeb. “A selected survey of umbral calculus”. In: Electron. J. Combin. 2 (1995), Dynamic Survey 3, 28. url: http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS3.

[DLR98]

Alessandro Di Bucchianico, Daniel E. Loeb, and Gian-Carlo Rota. “Umbral calculus in Hilbert space”. In: Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996). Vol. 161. Progr. Math. Birkhäuser Boston, Boston, MA, 1998, pp. 213–238.

[Gra88]

Sandy Grabiner. “Convergent expansions and bounded operators in the umbral calculus”. In: Adv. in Math. 72.1 (1988), pp. 132–167. url: https://doi.org/10.1016/0001-8708(88)90020-5.

[Gra89]

Sandy Grabiner. “Using Banach algebras to do analysis with the umbral calculus”. In: Conference on Automatic Continuity and Banach Algebras (Canberra, 1989). Vol. 21. Proc. Centre Math. Anal. Austral. Nat. Univ. Austral. Nat. Univ., Canberra, 1989, pp. 170–185.

[JR79]

S. A. Joni and G.-C. Rota. “Coalgebras and bialgebras in combinatorics”. In: Stud. Appl. Math. 61.2 (1979), pp. 93–139.

[Kho90]

Alexander Nickolaevich Kholodov. “The umbral calculus and orthogonal polynomials”. In: Acta Appl. Math. 19.1 (1990), pp. 1–54.

[KM86]

S. G. Kurbanov and V. M. Maksimov. “Mutual decompositions of differential operators and operators of divided difference”. In: Dokl. Akad. Nauk UzSSR 4 (1986), pp. 8–9.

[Loe89]

Daniel Elliott Loeb. The iterated logarithmic algebra. Thesis (Ph.D.)–Massachusetts Institute of Technology. ProQuest LLC, Ann Arbor, MI, 1989, (no paging).

[Loe90]

Daniel E. Loeb. “Sequences of symmetric functions of binomial type”. In: Stud. Appl. Math. 83.1 (1990), pp. 1–30. url: https://doi.org/10.1002/sapm19908311.

[Loe91]

Daniel E. Loeb. “The iterated logarithmic algebra”. In: Adv. Math. 86.2 (1991), pp. 155–234. url: https://doi.org/10.1016/0001-8708(91)90041-5.

[LR89]

Daniel E. Loeb and Gian-Carlo Rota. “Formal power series of logarithmic type”. In: Adv. Math. 75.1 (1989), pp. 1–118. url: https://doi.org/10.1016/0001-8708(89)90079-0.

[Mei34]

J. Meixner. “Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion”. In: J. London Math. Soc. 9.1 (1934), pp. 6–13. url: https://doi.org/10.1112/jlms/s1-9.1.6.

[MR70]

Ronald Mullin and Gian-Carlo Rota. “On the foundations of combinatorial theory. III. Theory of binomial enumeration”. In: Graph Theory and its Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1969). Academic Press, New York, 1970, 167–213 (loose errata).

[NS82]

Warren Nichols and Moss Sweedler. “Hopf algebras and combinatorics”. In: Umbral calculus and Hopf algebras (Norman, Okla., 1978). Vol. 6. Contemp. Math. Amer. Math. Soc., Providence, R.I., 1982, pp. 49–84.

[Ray87]

Nigel Ray. “Symbolic calculus: a 19th century approach to \(M\mathrm{U}\) and BP”. In: Homotopy theory (Durham, 1985). Vol. 117. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 1987, pp. 195–238.

[Ray88]

Nigel Ray. “Umbral calculus, binomial enumeration and chromatic polynomials”. In: Trans. Amer. Math. Soc. 309.1 (1988), pp. 191–213. url: http://dx.doi.org/10.2307/2001165.

[Rob10]

Thomas J. Robinson. “Formal calculus and umbral calculus”. In: Electron. J. Combin. 17.1 (2010), Research Paper 95, 31. arXiv: 0912.0961. url: http://www.combinatorics.org/Volume_17/Abstracts/v17i1r95.html.

[Rom84]

Steven Roman. The umbral calculus. Vol. 111. Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984, pp. x+193. isbn: 0-12-594380-6.

[RR78]

Steven M. Roman and Gian-Carlo Rota. “The umbral calculus”. In: Advances in Math. 27.2 (1978), pp. 95–188.

[RW88]

Nigel Ray and Colin Wright. “Colourings and partition types: a generalised chromatic polynomial”. In: vol. 25. B. Eleventh British Combinatorial Conference (London, 1987). 1988, pp. 277–286.

[SVY97]

D. Senato, A. Venezia, and J. Yang. “Möbius polynomial species”. In: Discrete Math. 173.1-3 (1997), pp. 229–256. url: https://doi.org/10.1016/S0012-365X(96)00133-1.

[Uen88]

Kazuo Ueno. “Umbral calculus and special functions”. In: Adv. in Math. 67.2 (1988), pp. 174–229. url: https://doi.org/10.1016/0001-8708(88)90040-0.

[Uen90]

Kazuo Ueno. “Hypergeometric series formulas through operator calculus”. In: Funkcial. Ekvac. 33.3 (1990), pp. 493–518. url: http://www.math.kobe-u.ac.jp/~fe/xml/mr1086774.xml.

[Van92]

Lucien Van Hamme. “Continuous operators which commute with translations, on the space of continuous functions on \(\Z _p\)”. In: \(p\)-adic functional analysis (Laredo, 1990). Vol. 137. Lecture Notes in Pure and Appl. Math. Dekker, New York, 1992, pp. 75–88.

[Ver96]

Ann Verdoodt. “\(p\)-adic \(q\)-umbral calculus”. In: J. Math. Anal. Appl. 198.1 (1996), pp. 166–177. url: https://doi.org/10.1006/jmaa.1996.0074.

[Ver98]

Ann Verdoodt. “Non-Archimedean umbral calculus”. In: Ann. Math. Blaise Pascal 5.1 (1998), pp. 55–73. url: http://www.numdam.org/item?id=AMBP_1998__5_1_55_0.

[Vis75]

O. V. Viskov. “Operator characterization of generalized Appell polynomials”. In: Dokl. Akad. Nauk SSSR 225.4 (1975), pp. 749–752.

[WR86]

Brian G. Wilson and Forrest J. Rogers. “Umbral calculus and the theory of multispecies nonideal gases”. In: Phys. A 139.2-3 (1986), pp. 359–386. url: https://doi.org/10.1016/0378-4371(86)90126-3.