History of Mathematics

数学の歴史を考えるときにまず問題なのは, どこから数学とみなすか, である。 大抵の数学の歴史の本には, 数の起源から書かれているが。 そのような数学の歴史全般については, Merzbach と Boyer の本 [BM11] を挙げるべきだろう。日本語訳もある。

代数的トポロジーの歴史の文献についてはここに書いたが, とりあえず Dieudonné の本 [Die09] を読むべきだろう。

代数的トポロジーは, その名前の通り代数的な道具を用いることに特徴があるが, 抽象的な代数的構造の歴史については, Johnstone の本 [Joh82] では, Mac Lane の [Mac81] が参照されている。それによると, 最も古い抽象的な代数的構造はであり, その次が Boolean algebra のようである。共に19世紀に既に考えられている。

以下は, 他に目についたものを記録したものである。

  • Sunada による幾何学の発展の歴史 [Sun19]
  • Stanley による1960年代と70年代の enumerative combinatorics と algebraic combinatorics [Sta21a]
  • [LL] の §1 には, vertex operator algebra の理論が登場する前とその直後の様子が書かれている。 Lepowsky の [Lep07] もある。
  • Stanley [Sta21a] は matroid の初期の歴史については, Cunningham の [Cun12] を参照している。
  • Stasheff は, [Sta21b] で各種 bracket の歴史について書いている。

References

[BM11]

C.B. Boyer and U.C. Merzbach. A History of Mathematics. third. John Wiley & Sons, 2011, p. 688. isbn: 9780470630563.

[Cun12]

William H. Cunningham. “The coming of the matroids”. In: Doc. Math. Extra vol.: Optimization stories (2012), pp. 143–153.

[Die09]

Jean Dieudonné. A history of algebraic and differential topology 1900–1960. Modern Birkhäuser Classics. Reprint of the 1989 edition [MR0995842]. Birkhäuser Boston, Ltd., Boston, MA, 2009, pp. xxii+648. isbn: 978-0-8176-4906-7. url: https://doi.org/10.1007/978-0-8176-4907-4.

[Joh82]

Peter T. Johnstone. Stone spaces. Vol. 3. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982, pp. xxi+370. isbn: 0-521-23893-5.

[Lep07]

James Lepowsky. “Some developments in vertex operator algebra theory, old and new”. In: Lie algebras, vertex operator algebras and their applications. Vol. 442. Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 355–387. arXiv: 0706.4072. url: https://doi.org/10.1090/conm/442/08536.

[LL]

Bong H. Lian and Andrew R. Linshaw. Vertex Algebras and Commutative Algebras. arXiv: 2107.03243.

[Mac81]

Saunders Mac Lane. “History of abstract algebra: origin, rise, and decline of a movement”. In: American mathematical heritage: algebra and applied mathematics (El Paso, Tex., 1975/Arlington, Tex., 1976). Mathematics Series, No. 13. Texas Tech Univ., Lubbock, TX, 1981, pp. 3–35.

[Sta21a]

Richard P. Stanley. “Enumerative and algebraic combinatorics in the 1960’s and 1970’s”. In: ICCM Not. 9.2 (2021), pp. 19–38. arXiv: 2105.07884. url: https://doi.org/10.4310/ICCM.2021.v9.n2.a2.

[Sta21b]

Jim Stasheff. “Brackets by any other name”. In: J. Geom. Mech. 13.3 (2021), pp. 501–516. arXiv: 2105 . 09724. url: https://doi.org/10.3934/jgm.2021014.

[Sun19]

Toshikazu Sunada. “From Euclid to Riemann and beyond: how to describe the shape of the universe”. In: Geometry in history. Springer, Cham, 2019, pp. 213–304. arXiv: 1904.01845.