|
Matroid からは, 様々な simplicial complex が定義される。 例えば, Björner の [Bjö92]
を見るとよい。
そもそも matroid の定義として independence set に関する公理を用いると, independence set
の集合として abstract simplicial complex ができるので, matroid 自身 simplicial complex
の一種と思うこともできる。
他にも, 目にしたものを挙げると以下のようになる。 Oriented matroid の場合も含めている。
Dinh [Le16] によると, broken circuit complex のアイデアは, Whitney の [Whi32]
まで遡るらしい。その後, Rota [Rot64], Wilf [Wil76], Brylawski [Bry77] などにより調べられた。
References
-
[ACS16]
-
Federico Ardila, Federico Castillo, and José Alejandro Samper. “The
topology of the external activity complex of a matroid”. In: Electron.
J. Combin. 23.3 (2016), Paper 3.8, 20. arXiv: 1410.3870. url:
https://doi.org/10.37236/5042.
-
[AD02]
-
Laura Anderson and James F. Davis.
“Mod 2 cohomology of combinatorial Grassmannians”. In: Selecta
Math. (N.S.) 8.2 (2002), pp. 161–200. arXiv: math/9911158. url:
http://dx.doi.org/10.1007/s00029-002-8104-4.
-
[And98]
-
L.
Anderson. “Homotopy groups of the combinatorial Grassmannian”.
In: Discrete Comput. Geom. 20.4 (1998), pp. 549–560. url:
http://dx.doi.org/10.1007/PL00009401.
-
[And99a]
-
Laura Anderson. “Matroid bundles”. In: New perspectives in
algebraic combinatorics (Berkeley, CA, 1996–97). Vol. 38. Math.
Sci. Res. Inst. Publ. Cambridge: Cambridge Univ. Press, 1999,
pp. 1–21.
-
[And99b]
-
Laura Anderson. “Topology of combinatorial
differential manifolds”. In: Topology 38.1 (1999), pp. 197–221. url:
http://dx.doi.org/10.1016/S0040-9383(98)00011-1.
-
[Bjö92]
-
Anders Björner. “The homology and shellability of matroids and
geometric lattices”. In: Matroid applications. Vol. 40. Encyclopedia
Math. Appl. Cambridge Univ. Press, Cambridge, 1992, pp. 226–283.
url: http://dx.doi.org/10.1017/CBO9780511662041.008.
-
[Bry77]
-
Tom Brylawski. “The
broken-circuit complex”. In: Trans. Amer. Math. Soc. 234.2 (1977),
pp. 417–433. url: http://dx.doi.org/10.2307/1997928.
-
[Cha00]
-
Manoj K. Chari. “On discrete Morse functions and combinatorial
decompositions”. In: Discrete Math. 217.1-3 (2000). Formal power
series and algebraic combinatorics (Vienna, 1997), pp. 101–113.
url: http://dx.doi.org/10.1016/S0012-365X(99)00258-7.
-
[CP89]
-
Charles J. Colbourn and William R. Pulleyblank. “Matroid
Steiner problems, the Tutte polynomial and network reliability”.
In: J. Combin. Theory Ser. B 47.1 (1989), pp. 20–31. url:
http://dx.doi.org/10.1016/0095-8956(89)90062-2.
-
[ESS22]
-
Alexander Engström, Raman Sanyal, and Christian Stump.
“Standard complexes of matroids and lattice paths”. In: Vietnam
J. Math. 50.3 (2022), pp. 763–779. arXiv: 1911.12290. url:
https://doi.org/10.1007/s10013-021-00546-z.
-
[Le16]
-
Dinh Van Le. “Broken circuit complexes of series-parallel networks”.
In: European J. Combin. 51 (2016), pp. 12–36. arXiv: 1404.1728.
url: https://doi.org/10.1016/j.ejc.2015.04.009.
-
[Rot64]
-
Gian-Carlo Rota. “On the foundations of combinatorial theory. I.
Theory of Möbius functions”. In: Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 2 (1964), 340–368 (1964).
-
[SZ93]
-
Bernd Sturmfels and Günter M. Ziegler. “Extension spaces of
oriented matroids”. In: Discrete Comput. Geom. 10.1 (1993),
pp. 23–45. url: http://dx.doi.org/10.1007/BF02573961.
-
[Whi32]
-
Hassler Whitney. “A logical expansion in
mathematics”. In: Bull. Amer. Math. Soc. 38.8 (1932), pp. 572–579.
url: http://dx.doi.org/10.1090/S0002-9904-1932-05460-X.
-
[Wil76]
-
Herbert S. Wilf. “Which polynomials are chromatic?” In: Colloquio
Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo I.
Rome: Accad. Naz. Lincei, 1976, 247–256. Atti dei Convegni Lincei,
No. 17.
|