ここで Hom-type algebra と言っているのは, Hartwig, Larsson, Silvestrov [HLS06] により導入された
Lie algebra の変種 Hom-Lie algebra の Hom構造を, 他の代数的構造に導入したものである。
Hom-Lie algebra の定義は簡単で, Lie algebra の定義の Jacobi identity を 自己準同型 \(\zeta :L\to L\)
でずらしたものに変えただけである。
このように, 自己準同型で既存の代数的構造に捻りを加えるということは, 様々な分野に自然に現れるようで, 非常に多くのものが定義されている。
目についたものを挙げると以下のようになる。
- Hom-associative algebra ([MS10])
- Hom-Leibniz algebra
- quasi-Lie algebra
- Hom-coalgebra
- Hom-quantum group ([Yauc])
- Hom-bialgebra ([Yaua])
- Hom-Hopf algebraと Hom-quasi-bialgebra ([EM13])
- Hom-Novikov algebra ([Yaub])
- comodule Hom-algebra ([Yaua])
- comodule Hom-coalgebra ([Zha])
- Hom-Lie superalgebra ([CL])
- Hom-Lie 2-algebra ([SC])
- Hom-Lie bialgebra ([SB])
- weak monoidal Hom-Hopf algebra ([WWZ])
- biHom-associative algebra, biHom-Lie algebra, and biHom-bialgebra
[Gra+]
- Hom-coring, Hom-entwining structure, entwined Hom-module [Kar]
- super Hom-Gel\('f\)and-Dorfman bialgebra and Hom-Lie conformal
superalgebra [YCH]
- Hom-Lie-Rinehart algebra [MMa]
- \(3\)-Hom-Lie bialgebras [WWC]
- infinitesimal Hom-bialgebra and infinitesimal Hom-Lie bialgebra ([Yaud])
- Hom-Batalin-Vilkoviski algebra, より一般に Hom-Gerstenhaber algebra [MMb]
- Hom-Lie algebroid ([MMb]).
- Hom-Lie-Hopf algebra ([HKS]).
またこのような代数的構造のための圏論的構造として, Panaite, Schrader, Staic [PSS] が Hom-tensor
category というものを導入している。 Hom-monoidal category と呼ぶべきだと思うが。 また, braided monoidal
category の Hom版も定義している。
- Hom-tensor category
- Hom-braided category
Hochschild (co)homology などの (co)homology も一般化されている。
- Hochschild cohomology
と Chevalley-Eilenberg cohomology の Hom-associative algebra と Hom-Lie
algebra への一般化 (Ammar, Ejbehi, Makhlouf の [AEM11])
- Hochschild, cyclic, periodic cyclic (co)homology の Hom-associative
algebraへの一般化 (Hassanzadeh, Shapiro, Sütlü の[HSS15])
- Gerstenhaber-Schack-type cohomology の Hom-bialgebra への一般化 (Dekkar と
Makhlouf の[DM])
複数入力版もある。
- \(n\)-Hom Lie algebra [AMS]
- \(n\)-Hom Leibniz algebra [MN]
References
-
[AEM11]
-
Faouzi Ammar, Zeyneb Ejbehi, and Abdenacer Makhlouf.
“Cohomology and deformations of Hom-algebras”. In: J. Lie Theory
21.4 (2011), pp. 813–836. arXiv: 1005.0456.
-
[AMS]
-
H. Ataguema, A. Makhlouf, and S. Silvestrov. Generalization of
n-ary Nambu algebras and beyond. arXiv: 0812.4058.
-
[CL]
-
Bintao Cao and Li Luo. Hom-Lie superalgebra structures on
finite-dimensional simple Lie superalgebras. arXiv: 1203.0136.
-
[DM]
-
Khadra
Dekkar and Abdenacer Makhlouf. Gerstenhaber-Schack Cohomology
for Hom-bialgebras and Deformations. arXiv: 1608.02084.
-
[EM13]
-
Mohamed Elhamdadi
and Abdenacer Makhlouf. “Hom-quasi-bialgebras”. In: Hopf algebras
and tensor categories. Vol. 585. Contemp. Math. Amer. Math.
Soc., Providence, RI, 2013, pp. 227–245. arXiv: 1209.0988. url:
https://doi.org/10.1090/conm/585/11617.
-
[Gra+]
-
Giacomo Graziani, Abdenacer Makhlouf, Claudia Menini, and
Florin Panaite. BiHom-Associative Algebras, BiHom-Lie Algebras
and BiHom-Bialgebras. arXiv: 1505.00469.
-
[HKS]
-
S. Halici, A. Karataş, and S. Sütlü. Hom-Lie-Hopf algebras. arXiv:
1910.07920.
-
[HLS06]
-
Jonas T. Hartwig, Daniel Larsson, and Sergei D. Silvestrov.
“Deformations of Lie algebras using \(\sigma \)-derivations”. In: J. Algebra
295.2 (2006), pp. 314–361. arXiv: math/0408064.
-
[HSS15]
-
Mohammad Hassanzadeh, Ilya Shapiro,
and Serkan Sütlü. “Cyclic homology for Hom-associative algebras”.
In: J. Geom. Phys. 98 (2015), pp. 40–56. arXiv: 1504.03019. url:
https://doi.org/10.1016/j.geomphys.2015.07.026.
-
[Kar]
-
Serkan Karaçuha. Hom-entwining structures and Hom-Hopf-type
modules. arXiv: 1412.2002.
-
[MMa]
-
Ashis Mandal and Satyendra Kumar Mishra. Hom-Lie-Rinehart
Algebras. arXiv: 1610.01477.
-
[MMb]
-
Ashis Mandal and Satyendra Kumar Mishra. On Hom-Gerstenhaber
algebras and Hom-Lie algebroids. arXiv: 1707.08891.
-
[MN]
-
Abdenacer Makhlouf and Anita Naolekar. On n-Hom-Leibniz
algebras and cohomology. arXiv: 1803.06840.
-
[MS10]
-
Abdenacer Makhlouf and Sergei Silvestrov. “Notes on 1-parameter
formal deformations of Hom-associative and Hom-Lie algebras”. In:
Forum Math. 22.4 (2010), pp. 715–739. arXiv: 0712.3130. url:
https://doi.org/10.1515/FORUM.2010.040.
-
[PSS]
-
Florin Panaite, Paul Schrader, and Mihai D. Staic. Hom-Tensor
Categories and the Hom-Yang-Baxter Equation. arXiv: 1702.08475.
-
[SB]
-
Yunhe Sheng and Chengming Bai. A new approach to hom-Lie
bialgebras. arXiv: 1304.1954.
-
[SC]
-
Yunhe Sheng and Danhua Chen. Hom-Lie 2-algebras. arXiv:
1110.3405.
-
[WWC]
-
Mengping Wang, Linli Wu, and Yongsheng Cheng. Local cocycle
3-Hom-Lie Bialgebras and 3-Lie Classical Hom-Yang-Baxter
Equation. arXiv: 1705.02554.
-
[WWZ]
-
Wei Wang, Shuanhong Wang, and Xiaohui Zhang. Constructing New
Braided \(T\)-Categories via Weak Monoidal Hom-Hopf Algebras. arXiv:
1502.07377.
-
[Yaua]
-
Donald Yau. Hom-bialgebras and comodule Hom-algebras. arXiv:
0810.4866.
-
[Yaub]
-
Donald Yau. Hom-Novikov algebras. arXiv: 0909.0726.
-
[Yauc]
-
Donald Yau. Hom-quantum groups III: Representations and module
Hom-algebras. arXiv: 0911.5402.
-
[Yaud]
-
Donald Yau. Infinitesimal Hom-bialgebras and Hom-Lie bialgebras.
arXiv: 1001.5000.
-
[YCH]
-
Lamei Yuan, Sheng
Chen, and Caixia He. Super Hom-Gel\('\)fand-Dorfman bialgebras and
Hom-Lie conformal superalgebras. arXiv: 1507.08908.
-
[Zha]
-
Tao Zhang. Comodule Hom-coalgebras. arXiv: 1301.4152.
|