ホモトピー論の視点からは, Floer homology の元になる “Floer homotopy type” があると考えるのは自然である。
実際, 様々な人々がそれを実現するアイデアを考えている。 Lipschitz と Sarkar の Khovanov homotopy type
に関する survey [LS] では, 次のような仕事が紹介されている。
これらの結果から, Floer homotopy type は stable homotopy type として表すべきもののように思える。
一方で, Barraud の [Bar18] では, symplectic manifold の基本群を Floer theoretic object
で表すということが考えられている。
References
-
[AK]
-
Mohammed Abouzaid and Thomas Kragh. On the immersion classes
of nearby Lagrangians. arXiv: 1305.6810.
-
[Bar18]
-
Jean-François Barraud. “A Floer fundamental group”. In: Ann. Sci.
Éc. Norm. Supér. (4) 51.3 (2018), pp. 773–809. arXiv: 1404.3266. url:
https://doi.org/10.24033/asens.2366.
-
[Bau04]
-
Stefan Bauer. “A
stable cohomotopy refinement of Seiberg-Witten invariants. II”. In:
Invent. Math. 155.1 (2004), pp. 21–40. arXiv: math/0204267. url:
http://dx.doi.org/10.1007/s00222-003-0289-4.
-
[BF04]
-
Stefan Bauer and Mikio Furuta. “A stable cohomotopy refinement of
Seiberg-Witten invariants. I”.
In: Invent. Math. 155.1 (2004), pp. 1–19. arXiv: math/0204340. url:
http://dx.doi.org/10.1007/s00222-003-0288-5.
-
[CJS95]
-
R. L. Cohen, J. D. S. Jones, and G. B. Segal. “Floer’s
infinite-dimensional Morse theory and homotopy theory”. In: The
Floer memorial volume. Vol. 133. Progr. Math. Basel: Birkhäuser,
1995, pp. 297–325.
-
[Coh09]
-
Ralph L. Cohen. “Floer homotopy theory, realizing chain complexes
by module
spectra, and manifolds with corners”. In: Algebraic topology. Vol. 4.
Abel Symp. Berlin: Springer, 2009, pp. 39–59. arXiv: 0802.2752. url:
http://dx.doi.org/10.1007/978-3-642-01200-6_3.
-
[Coh10]
-
Ralph L. Cohen. “The Floer homotopy type of the cotangent bundle”.
In: Pure Appl. Math. Q. 6.2, Special Issue: In honor of Michael Atiyah
and Isadore Singer (2010), pp. 391–438. arXiv: math/0702852.
-
[Dou]
-
Christopher L. Douglas. Twisted Parametrized Stable Homotopy
Theory. arXiv: math/0508070.
-
[Fur01]
-
M. Furuta. “Monopole equation and the \(\frac{11}8\)-conjecture”. In: Math. Res.
Lett. 8.3 (2001), pp. 279–291. url:
https://doi.org/10.4310/MRL.2001.v8.n3.a5.
-
[Khaa]
-
Tirasan Khandhawit. A new gauge slice for the relative Bauer-Furuta
invariants. arXiv: 1401.7590.
-
[Khab]
-
Tirasan Khandhawit. On the stable Conley index in Hilbert spaces.
arXiv: 1402.1665.
-
[KLS]
-
Tirasan Khandhawit, Jianfeng Lin, and Hirofumi Sasahira. Unfolded
Seiberg-Witten Floer spectra, I: Definition and invariance. arXiv:
1604.08240.
-
[KM]
-
Peter B. Kronheimer and Ciprian Manolescu. Periodic Floer
pro-spectra from the Seiberg-Witten equations. arXiv: math/0203243.
-
[Kra]
-
Thomas Kragh. The Viterbo Transfer as a Map of Spectra. arXiv:
0712.2533.
-
[Kra13]
-
Thomas Kragh. “Parametrized ring-spectra and the nearby
Lagrangian conjecture”. In: Geom. Topol. 17.2 (2013). With an
appendix by Mohammed Abouzaid, pp. 639–731. arXiv: 1107.4674.
url: http://dx.doi.org/10.2140/gt.2013.17.639.
-
[LS]
-
Robert Lipshitz and Sucharit Sarkar. Spatial refinements and
Khovanov homology. arXiv: 1709.03602.
-
[Man03]
-
Ciprian Manolescu. “Seiberg-Witten-Floer stable homotopy type of
three-manifolds with \(b_1=0\)”. In: Geom. Topol. 7 (2003), pp. 889–932. arXiv:
math/0104024. url: https://doi.org/10.2140/gt.2003.7.889.
-
[Man07]
-
Ciprian Manolescu. “A gluing theorem for the relative Bauer-Furuta
invariants”. In: J. Differential Geom. 76.1 (2007), pp. 117–153. arXiv:
math/0311342. url:
http://projecteuclid.org/euclid.jdg/1180135667.
-
[Sas]
-
H. Sasahira. Gluing formula for the stable cohomotopy version of
Seiberg-Witten invariants along 3-manifolds with \(b_1 > 0\). arXiv: 1408.2623.
|