|
cobar型のEilenberg-Mooreスペクトル系列
|
余単体的空間の homology spectral sequence の代表としては, cobar型の Eilenberg-Moore spectral
sequence が挙げられる。その構成には様々な方法があるが, 代表的なのは以下のものだろう。
収束性については, 色々難しい問題がある。Jeanneret と Osse の [JO99] では, Larry Smith
の構成に基づいて議論されている。 Tilman Bauer の [Bau] は, cosimplicial space の homology spectral
sequence として一般的に議論されている点で, Dwyer の結果の延長にあたるものと言えるだろう。
References
-
[Bau]
-
Tilman Bauer. Convergence of the Eilenberg-Moore spectral sequence
for generalized cohomology theories. arXiv: 0803.3798.
-
[Dwy74]
-
W. G. Dwyer. “Strong convergence of the Eilenberg-Moore spectral
sequence”. In: Topology 13 (1974), pp. 255–265.
-
[Dwy75]
-
William G. Dwyer. “Exotic convergence of the Eilenberg-Moore
spectral sequence”. In: Illinois J. Math. 19.4 (1975), pp. 607–617.
-
[EM64]
-
Samuel Eilenberg and J. C. Moore. “Homological algebra and
fibrations”. In: Colloque de Topologie (Brussels, 1964). Librairie
Universitaire, Louvain, 1964, pp. 81–90.
-
[EM66]
-
Samuel Eilenberg and John C. Moore. “Homology and fibrations. I.
Coalgebras, cotensor product and its derived functors”. In: Comment.
Math. Helv. 40 (1966), pp. 199–236.
-
[JO99]
-
A. Jeanneret and A. Osse. “The Eilenberg-Moore spectral sequence
in \(K\)-theory”. In: Topology 38.5 (1999), pp. 1049–1073. url:
http://dx.doi.org/10.1016/S0040-9383(98)00046-9.
-
[Rec70]
-
David L. Rector. “Steenrod operations in the Eilenberg-Moore
spectral sequence”. In: Comment. Math. Helv. 45 (1970), pp. 540–552.
-
[Smi70a]
-
Larry Smith. Lectures on the Eilenberg-Moore spectral sequence.
Lecture Notes in Mathematics, Vol. 134. Berlin: Springer-Verlag,
1970, pp. vii+142.
-
[Smi70b]
-
Larry Smith. “On the Künneth theorem. I. The Eilenberg-Moore
spectral sequence”. In: Math. Z. 116 (1970), pp. 94–140.
-
[Tam02]
-
Dai Tamaki. “The fiber of iterated Freudenthal suspension and
Morava \(K\)-theory of \(\Omega ^{k}S^{2l+1}\)”. In: Recent progress in homotopy theory
(Baltimore, MD, 2000). Vol. 293. Contemp. Math. Providence, RI:
Amer. Math. Soc., 2002, pp. 299–329.
-
[Tam12]
-
Dai Tamaki. “The Salvetti complex and the little cubes”. In: J. Eur.
Math. Soc. (JEMS) 14.3 (2012), pp. 801–840. arXiv: math/0602085.
url: http://dx.doi.org/10.4171/JEMS/319.
-
[Tam94]
-
Dai Tamaki. “A dual Rothenberg-Steenrod spectral sequence”. In:
Topology 33.4 (1994), pp. 631–662. url:
http://dx.doi.org/10.1016/0040-9383(94)90002-7.
|
|