Algebras Defined by Reflections

Hecke algebra を始めとして, Coxeter group と Coxeter systemcomplex reflection group など, reflection からは, 様々な代数が定義される。

まず Hecke algebra の変種に様々なものがあるが, それについては, このページに挙げた。 それ以外に, 目にしたものを挙げると次のようになる。

  • Schur algebra とその変種
  • quasi-Coxeter algebra [Tol08]
  • descent algebra [Sol76]
  • face semigroup algebra [Sal08]
  • nil-Coxeter algebra [FS94]
  • generalized nil-Coxeter algebra [Kha17; Kha18b; Kha18a]
  • Hecke group algebra [HT09]

References

[FS94]

Sergey Fomin and Richard P. Stanley. “Schubert polynomials and the nil-Coxeter algebra”. In: Adv. Math. 103.2 (1994), pp. 196–207. url: https://doi.org/10.1006/aima.1994.1009.

[HT09]

Florent Hivert and Nicolas M. Thiéry. “The Hecke group algebra of a Coxeter group and its representation theory”. In: J. Algebra 321.8 (2009), pp. 2230–2258. arXiv: 0711 . 1561. url: http://dx.doi.org/10.1016/j.jalgebra.2008.09.039.

[Kha17]

Apoorva Khare. “Generalized nil-Coxeter algebras, cocommutative algebras, and the PBW property”. In: Groups, rings, group rings, and Hopf algebras. Vol. 688. Contemp. Math. Amer. Math. Soc., Providence, RI, 2017, pp. 139–168. arXiv: 1601 . 04775. url: https://doi.org/10.1090/conm/688.

[Kha18a]

Apoorva Khare. “Generalized nil-Coxeter algebras”. In: Sém. Lothar. Combin. 80B (2018), Art. 29, 12. arXiv: 1802.07015.

[Kha18b]

Apoorva Khare. “Generalized nil-Coxeter algebras over discrete complex reflection groups”. In: Trans. Amer. Math. Soc. 370.4 (2018), pp. 2971–2999. arXiv: 1601.08231. url: https://doi.org/10.1090/tran/7304.

[Sal08]

Franco V. Saliola. “On the quiver of the descent algebra”. In: J. Algebra 320.11 (2008), pp. 3866–3894. arXiv: 0708.4213. url: http://dx.doi.org/10.1016/j.jalgebra.2008.07.009.

[Sol76]

Louis Solomon. “A Mackey formula in the group ring of a Coxeter group”. In: J. Algebra 41.2 (1976), pp. 255–264.

[Tol08]

Valerio Toledano Laredo. “Quasi-Coxeter algebras, Dynkin diagram cohomology, and quantum Weyl groups”. In: Int. Math. Res. Pap. IMRP (2008), Art. ID rpn009, 167. arXiv: math/0506529.