|
Algebras Defined by Reflections
|
Hecke algebra を始めとして, Coxeter group と Coxeter system や complex reflection
group など, reflection からは, 様々な代数が定義される。
まず Hecke algebra の変種に様々なものがあるが, それについては, このページに挙げた。 それ以外に,
目にしたものを挙げると次のようになる。
References
-
[FS94]
-
Sergey Fomin and Richard P. Stanley. “Schubert polynomials and
the nil-Coxeter algebra”. In: Adv. Math. 103.2 (1994), pp. 196–207.
url: https://doi.org/10.1006/aima.1994.1009.
-
[HT09]
-
Florent Hivert and Nicolas M. Thiéry. “The Hecke group algebra
of a Coxeter group and its representation theory”. In: J.
Algebra 321.8 (2009), pp. 2230–2258. arXiv: 0711.1561. url:
http://dx.doi.org/10.1016/j.jalgebra.2008.09.039.
-
[Kha17]
-
Apoorva Khare. “Generalized nil-Coxeter algebras, cocommutative
algebras, and the PBW property”. In: Groups, rings, group rings,
and Hopf algebras. Vol. 688. Contemp. Math. Amer. Math. Soc.,
Providence, RI, 2017, pp. 139–168. arXiv: 1601.04775. url:
https://doi.org/10.1090/conm/688.
-
[Kha18a]
-
Apoorva Khare. “Generalized nil-Coxeter algebras”. In: Sém. Lothar.
Combin. 80B (2018), Art. 29, 12. arXiv: 1802.07015.
-
[Kha18b]
-
Apoorva Khare. “Generalized nil-Coxeter
algebras over discrete complex reflection groups”. In: Trans. Amer.
Math. Soc. 370.4 (2018), pp. 2971–2999. arXiv: 1601.08231. url:
https://doi.org/10.1090/tran/7304.
-
[KM04]
-
Anatol N. Kirillov and Toshiaki Maeno. “Noncommutative algebras
related with Schubert calculus on Coxeter groups”. In: European J.
Combin. 25.8 (2004), pp. 1301–1325. arXiv: math/0310068. url:
http://dx.doi.org/10.1016/j.ejc.2003.11.006.
-
[Sal08]
-
Franco V. Saliola. “On the quiver of the descent algebra”. In:
J. Algebra 320.11 (2008), pp. 3866–3894. arXiv: 0708.4213. url:
http://dx.doi.org/10.1016/j.jalgebra.2008.07.009.
-
[Sol76]
-
Louis Solomon. “A Mackey formula in the group ring of a Coxeter
group”. In: J. Algebra 41.2 (1976), pp. 255–264.
-
[Tol08]
-
Valerio Toledano Laredo. “Quasi-Coxeter algebras, Dynkin diagram
cohomology, and quantum Weyl groups”. In: Int. Math. Res. Pap.
IMRP (2008), Art. ID rpn009, 167. arXiv: math/0506529.
|
|