-
[BB09]
-
M. A. Batanin and
C. Berger. “The lattice path operad and Hochschild cochains”. In:
Alpine perspectives on algebraic topology. Vol. 504. Contemp. Math.
Providence, RI: Amer. Math. Soc., 2009, pp. 23–52. arXiv: 0902.
0556. url: http://dx.doi.org/10.1090/conm/504/09874.
-
[BD04]
-
Alexander Beilinson and Vladimir Drinfeld. Chiral algebras.
Vol. 51. American Mathematical Society Colloquium Publications.
Providence, RI: American Mathematical Society, 2004, p. vi 375.
isbn: 0-8218-3528-9.
-
[BK98]
-
Sergey Barannikov and Maxim Kontsevich. “Frobenius manifolds and
formality of Lie algebras of polyvector fields”. In: Internat. Math.
Res. Notices 4 (1998), pp. 201–215. arXiv: alg-geom/9710032. url:
http://dx.doi.org/10.1155/S1073792898000166.
-
[Bor86]
-
Richard E.
Borcherds. “Vertex algebras, Kac-Moody algebras, and the Monster”.
In: Proc. Nat. Acad. Sci. U.S.A. 83.10 (1986), pp. 3068–3071. url:
http://dx.doi.org/10.1073/pnas.83.10.3068.
-
[BV77]
-
I.A. Batalin and G.S. Vilkovisky. “Relativistic \(S\)-matrix of dynamical
systems with bosons and fermion constraints”. In: Phys. Lett. 69B
(1977), pp. 309–312.
-
[BV81]
-
I. A. Batalin and G. A. Vilkovisky. “Gauge
algebra and quantization”. In: Phys. Lett. B 102.1 (1981), pp. 27–31.
url: https://doi.org/10.1016/0370-2693(81)90205-7.
-
[Cos07]
-
Kevin Costello. “Topological conformal field theories and Calabi-Yau
categories”. In: Adv. Math. 210.1 (2007), pp. 165–214. arXiv: math/
0412149. url: http://dx.doi.org/10.1016/j.aim.2006.06.004.
-
[CS]
-
Moira Chas and Dennis Sullivan. String Topology. arXiv: math/
9911159.
-
[DV13]
-
Gabriel C. Drummond-Cole and Bruno
Vallette. “The minimal model for the Batalin-Vilkovisky operad”. In:
Selecta Math. (N.S.) 19.1 (2013), pp. 1–47. arXiv: 1105.2008. url:
http://dx.doi.org/10.1007/s00029-012-0098-y.
-
[FB04]
-
Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic
curves. Second. Vol. 88. Mathematical Surveys and Monographs.
Providence, RI: American Mathematical Society, 2004, pp. xiv+400.
isbn: 0-8218-3674-9.
-
[Ger63]
-
Murray Gerstenhaber. “The cohomology structure of an associative
ring”. In: Ann. of Math. (2) 78 (1963), pp. 267–288.
-
[Get94]
-
E. Getzler. “Batalin-Vilkovisky
algebras and two-dimensional topological field theories”. In: Comm.
Math. Phys. 159.2 (1994), pp. 265–285. arXiv: hep-th/9212043.
url: http://projecteuclid.org/euclid.cmp/1104254599.
-
[Gin]
-
Victor Ginzburg. Calabi-Yau algebras. arXiv: math/0612139.
-
[GS10]
-
Victor Ginzburg and Travis Schedler. “Differential operators
and BV structures in noncommutative geometry”. In: Selecta
Math. (N.S.) 16.4 (2010), pp. 673–730. arXiv: 0710.3392. url:
http://dx.doi.org/10.1007/s00029-010-0029-8.
-
[Kau08]
-
Ralph M. Kaufmann. “A proof of a cyclic version of Deligne’s
conjecture via cacti”. In: Math. Res. Lett. 15.5 (2008), pp. 901–921.
arXiv: math/0403340.
-
[Kos85]
-
Jean-Louis Koszul. “Crochet de Schouten-Nijenhuis et cohomologie”.
In: Astérisque Numero Hors Serie (1985). The mathematical heritage
of Élie Cartan (Lyon, 1984), pp. 257–271.
-
[LS]
-
A. Losev and S. Shadrin. From Zwiebach invariants to Getzler
relation. arXiv: math/0506039.
-
[LZ93]
-
Bong H. Lian and Gregg J. Zuckerman. “New perspectives on
the BRST-algebraic structure of string theory”. In: Comm. Math.
Phys. 154.3 (1993), pp. 613–646. arXiv: hep-th/9211072. url:
http://projecteuclid.org/euclid.cmp/1104253081.
-
[Man99]
-
Yuri I. Manin. Frobenius manifolds, quantum cohomology, and
moduli spaces. Vol. 47. American Mathematical Society Colloquium
Publications. Providence, RI: American Mathematical Society, 1999,
pp. xiv+303. isbn: 0-8218-1917-8.
-
[Men09]
-
Luc Menichi. “Batalin-Vilkovisky algebra structures on Hochschild
cohomology”. In: Bull. Soc. Math. France 137.2 (2009), pp. 277–295.
arXiv: 0711.1946.
-
[PS94]
-
Michael Penkava and Albert Schwarz. “On some algebraic structures
arising in string theory”. In: Perspectives in mathematical physics.
Conf. Proc. Lecture Notes Math. Phys., III. Int. Press, Cambridge,
MA, 1994, pp. 219–227.
-
[Rog09]
-
Claude Roger. “Gerstenhaber and Batalin-Vilkovisky algebras;
algebraic, geometric, and physical aspects”. In: Arch. Math. (Brno)
45.4 (2009), pp. 301–324.
-
[Sch93]
-
Albert Schwarz. “Geometry of Batalin-Vilkovisky quantization”. In:
Comm. Math. Phys. 155.2 (1993), pp. 249–260. url:
http://projecteuclid.org/euclid.cmp/1104253279.
-
[Sta98]
-
Jim Stasheff. “The
(secret?) homological algebra of the Batalin-Vilkovisky approach”.
In: Secondary calculus and cohomological physics (Moscow, 1997).
Vol. 219. Contemp. Math. Amer. Math. Soc., Providence, RI, 1998,
pp. 195–210. url: https://doi.org/10.1090/conm/219/03076.
-
[Tra08]
-
Thomas Tradler. “The Batalin-Vilkovisky algebra on Hochschild
cohomology induced by infinity inner products”. In: Ann. Inst. Fourier
(Grenoble) 58.7 (2008), pp. 2351–2379. arXiv: math/0210150. url:
http://aif.cedram.org/item?id=AIF_2008__58_7_2351_0.
-
[TT00]
-
D. Tamarkin and B. Tsygan. “Noncommutative differential calculus,
homotopy BV algebras and formality conjectures”. In: Methods Funct.
Anal. Topology 6.2 (2000), pp. 85–100. arXiv: math/0002116.
-
[TTW]
-
John Terilla, Thomas Tradler, and Scott O. Wilson. Homotopy DG
algebras induce homotopy BV algebras. arXiv: 1106.1856.
-
[TZ06]
-
Thomas Tradler and
Mahmoud Zeinalian. “On the cyclic Deligne conjecture”. In: J. Pure
Appl. Algebra 204.2 (2006), pp. 280–299. arXiv: math/0404218. url:
http://dx.doi.org/10.1016/j.jpaa.2005.04.009.
-
[War]
-
Benjamin C. Ward. Maurer-Cartan Elements and Cyclic Operads.
arXiv: 1409.5709.
-
[Wit90]
-
Edward Witten. “A note on the antibracket
formalism”. In: Modern Phys. Lett. A 5.7 (1990), pp. 487–494. url:
https://doi.org/10.1142/S0217732390000561.
-
[Wit92]
-
Edward Witten. “The \(N\) matrix model and gauged WZW
models”. In: Nuclear Phys. B 371.1-2 (1992), pp. 191–245. url:
https://doi.org/10.1016/0550-3213(92)90235-4.
-
[WZ92]
-
Edward Witten and Barton Zwiebach.
“Algebraic structures and differential geometry in two-dimensional
string theory”. In: Nuclear Phys. B 377.1-2 (1992), pp. 55–112. url:
http://dx.doi.org/10.1016/0550-3213(92)90018-7.
-
[Zwi93]
-
Barton Zwiebach. “Closed string field theory: quantum action and
the Batalin-Vilkovisky master equation”. In: Nuclear Phys. B 390.1
(1993), pp. 33–152. url:
http://dx.doi.org/10.1016/0550-3213(93)90388-6.