Postnikov tower が \(n\)-stage までしかない空間のホモトピー型, あるいは与えられた空間の \(n\)-stage Postnikov
section を homotopy \(n\)-type という。
連結な空間の homotopy \(1\)-type は, その基本群で決まる。 つまり, \(K(\pi ,1)\) 空間である。より一般に, homotopy \(1\)-type は
fundamental groupoid で決まる。
このことを出発点に, より高次の homotopy \(n\)-type を, 代数的な構造で記述しようという試みがある。有名なのは Grothendieck の
[Gro] だろうか。それ以前に, R. Brown などにより様々な試みがある。 これまでに知られていることについては, Blanc と Paoli
の [BP14] の Introduction を見るのが手っ取り早い。
このような対応で, homotopy \(n\)-type に対応する weak \(n\)-groupoid という概念があるという主張を homotopy
hypothesis という。
小さな \(n\) については, 以下のようなモデルがある。
一般の \(n\) については, 次のようなモデルがある。
- \(\mathrm {cat}^n\)-group [Lod82]
- crossed \(n\)-cube [ES87; Por93]
- \(n\)-hyper-crossed complex [CC91]
- Bataninの higher groupoid [Bat98; Cis07]
- \(n\)-hypergroupoid [Gle82]
- Tamsamani の weak \(n\)-groupoid [Tam99; Sim12; Sim]
- Blanc と Paoli の weakly globular pseudo \(n\)-fold groupoid [BP14]
References
-
[Bat98]
-
M. A.
Batanin. “Monoidal globular categories as a natural environment
for the theory of weak \(n\)-categories”. In: Adv. Math. 136.1 (1998),
pp. 39–103. url: http://dx.doi.org/10.1006/aima.1998.1724.
-
[Bau91]
-
Hans Joachim Baues. Combinatorial homotopy and \(4\)-dimensional
complexes. Vol. 2. De Gruyter Expositions in Mathematics.
With a preface by Ronald Brown. Walter de Gruyter &
Co., Berlin, 1991, pp. xxviii+380. isbn: 3-11-012488-2. url:
https://doi.org/10.1515/9783110854480.
-
[Ber99]
-
Clemens Berger. “Double loop spaces, braided monoidal categories
and algebraic \(3\)-type of space”. In: Higher homotopy structures
in topology and mathematical physics (Poughkeepsie, NY, 1996).
Vol. 227. Contemp. Math. Amer. Math. Soc., Providence, RI, 1999,
pp. 49–66. url: https://doi.org/10.1090/conm/227/03252.
-
[BP14]
-
David Blanc and Simona Paoli. “Segal-type algebraic models of
\(n\)-types”. In: Algebr. Geom. Topol. 14.6 (2014), pp. 3419–3491. arXiv:
1204.5101. url: https://doi.org/10.2140/agt.2014.14.3419.
-
[Bro+02]
-
Ronald Brown, Keith A. Hardie, Klaus Heiner Kamps, and Timothy
Porter. “A homotopy double groupoid of a Hausdorff space”. In:
Theory Appl. Categ. 10 (2002), pp. 71–93.
-
[BS76]
-
Ronald Brown and Christopher B. Spencer. “Double groupoids and
crossed modules”. In: Cahiers Topologie Géom. Différentielle 17.4
(1976), pp. 343–362.
-
[CC91]
-
P. Carrasco and A. M. Cegarra. “Group-theoretic algebraic models
for homotopy
types”. In: J. Pure Appl. Algebra 75.3 (1991), pp. 195–235. url:
http://dx.doi.org/10.1016/0022-4049(91)90133-M.
-
[CHR12]
-
Antonio Martı́nez Cegarra, Benjamı́n A. Heredia, and Josué
Remedios. “Double groupoids and homotopy 2-types”. In: Appl.
Categ. Structures 20.4 (2012), pp. 323–378. arXiv: 1003.3820. url:
https://doi.org/10.1007/s10485-010-9240-1.
-
[Cis07]
-
Denis-Charles Cisinski. “Batanin higher groupoids and homotopy
types”. In: Categories in algebra, geometry and mathematical
physics. Vol. 431. Contemp. Math. Providence, RI: Amer.
Math. Soc., 2007, pp. 171–186. arXiv: math / 0604442. url:
http://dx.doi.org/10.1090/conm/431/08272.
-
[ES87]
-
Graham Ellis and Richard Steiner.
“Higher-dimensional crossed modules and the homotopy groups of
\((n+1)\)-ads”. In: J. Pure Appl. Algebra 46.2-3 (1987), pp. 117–136. url:
http://dx.doi.org/10.1016/0022-4049(87)90089-2.
-
[Gle82]
-
Paul G. Glenn. “Realization of cohomology classes in arbitrary exact
categories”. In: J. Pure Appl. Algebra 25.1 (1982), pp. 33–105. url:
http://dx.doi.org/10.1016/0022-4049(82)90094-9.
-
[Gro]
-
Alexander Grothendieck. Pursuing Stacks. arXiv: 2111.01000.
-
[HKK01]
-
K. A. Hardie, K. H. Kamps, and R. W. Kieboom. “A homotopy
bigroupoid of a topological space”. In: Appl. Categ. Structures 9.3
(2001), pp. 311–327. url:
http://dx.doi.org/10.1023/A:1011270417127.
-
[Lod82]
-
Jean-Louis Loday. “Spaces with finitely many nontrivial homotopy
groups”. In: J. Pure Appl. Algebra 24.2 (1982), pp. 179–202. url:
http://dx.doi.org/10.1016/0022-4049(82)90014-7.
-
[MS93]
-
Ieke Moerdijk and Jan-Alve Svensson. “Algebraic classification of
equivariant homotopy
\(2\)-types. I”. In: J. Pure Appl. Algebra 89.1-2 (1993), pp. 187–216. url:
http://dx.doi.org/10.1016/0022-4049(93)90094-A.
-
[MW50]
-
Saunders MacLane and J. H. C. Whitehead. “On the \(3\)-type of a
complex”. In: Proc. Nat. Acad. Sci. U.S.A. 36 (1950), pp. 41–48.
url: https://doi.org/10.1073/pnas.36.1.41.
-
[Por93]
-
Timothy Porter. “\(n\)-types of simplicial groups and crossed \(n\)-cubes”. In:
Topology 32.1 (1993), pp. 5–24. url:
https://doi.org/10.1016/0040-9383(93)90033-R.
-
[Sim]
-
Carlos T. Simpson. Homotopy theory of higher categories. arXiv:
1001.4071.
-
[Sim12]
-
Carlos Simpson. Homotopy theory of higher categories. Vol. 19.
New Mathematical Monographs. Cambridge: Cambridge University
Press, 2012, pp. xviii+634. isbn: 978-0-521-51695-2.
-
[Tam99]
-
Zouhair Tamsamani. “Sur des notions de \(n\)-catégorie et \(n\)-groupoı̈de
non strictes via des ensembles multi-simpliciaux”. In: \(K\)-Theory
16.1 (1999), pp. 51–99. arXiv: alg - geom / 9512006. url:
https://doi.org/10.1023/A:1007747915317.
|