様々な分野に登場する Rota-Baxter algebra という代数的構造がある。 Run-Qiang Jian [Jia13; Jia14] によると,
Rota-Baxter operator は, Baxter の 確率論の研究 [Bax60] で様々な関係式を統一的に扱うものとして登場した。その後,
そのような operator を持つ algebra が Rota [Rot69] により Baxter algebra と名付けられたため, 現在では
Rota-Baxter algebra として呼ばれているようである。
Rota-Baxeter algebra については, Ebrahimi-Fard と Patras による survey [EP]
がある。そこでは, Guo の本 [Guo12], Kung, Rota, Yan の [KRY09], そして Rota の [Rot95]
が参照されている。
Run-Qiang Jian [Jia13; Jia14] によると, 以下のことに関係している。
Connes-Kreimer theory と関係あるということは, tree Hopf algebra と深い関係にあるということである。
Ebraihimi-Fard と Guo [EG08a; Guo09] や Aguiar と Moreira の[AM06] など。
一般化や変種も色々考えられている。
- Brzeziński [Brz16] の Rota-Baxeter systems
- Guo と Li [LG22] の braided Rota-Baxter algebra
- Semenov-Tian-Shansky [Sem83] の modified Rota-Baxter algebra
- Gao, Guo, Zhang [ZGG20] の matching Rota-Baxter algebra
- Guo [Guo12] の Rota-Baxter family algebra
- Lazarev, Sheng, Tang [LST23; LST21] の relative Rota-Baxter Lie algebra
と homotopy relative Rota-Baxter algebra
- Bai, Guo, Ma [BGM24] による Rota-Baxter antisymmetric infinitesimal
bialgebra
- Rota-Baxter Lie algebra [Bor90; Kup99]
- Rota-Baxter Lie group [GLS21]
- Rota-Baxter Lie algebroid [GLS21]
- Rota-Baxter Lie groupoid [GLS21]
- Rota-Baxter pre-Lie algebra [Guo+]
- Rota-Baxter Lie \(2\)-algebra [ZL23]
- Rota-Baxter Lie bialgebra [Bai+]
References
-
[Agu00]
-
Marcelo Aguiar. “Pre-Poisson algebras”. In: Lett. Math. Phys. 54.4
(2000), pp. 263–277. url:
http://dx.doi.org/10.1023/A:1010818119040.
-
[AM06]
-
Marcelo Aguiar and Walter Moreira. “Combinatorics of the free
Baxter algebra”. In: Electron. J. Combin. 13.1 (2006), Research Paper
17, 38 pp. (electronic). arXiv: math/0510169. url: http://www.combinatorics.org/Volume_13/Abstracts/v13i1r17.html.
-
[Bai+]
-
Chengming Bai, Li Guo, Guilai Liu, and Tianshui Ma.
Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and
special L-dendriform bialgebras. arXiv: 2207.08703.
-
[Bax60]
-
Glen Baxter. “An analytic problem whose solution follows from
a simple algebraic identity”. In: Pacific J. Math. 10 (1960),
pp. 731–742.
-
[BGM24]
-
Chengming Bai, Li Guo, and Tianshui Ma. “Bialgebras, Frobenius
algebras and associative Yang-Baxter equations for Rota-Baxter
algebras”. In: Asian J. Math. 28.3 (2024), pp. 411–436. arXiv:
2112.10928.
-
[Bor90]
-
Martin Bordemann. “Generalized Lax pairs, the modified classical
Yang-Baxter equation, and affine geometry of Lie groups”.
In: Comm. Math. Phys. 135.1 (1990), pp. 201–216. url:
http://projecteuclid.org/euclid.cmp/1104201925.
-
[Brz16]
-
Tomasz Brzeziński. “Rota-Baxter systems, dendriform algebras and
covariant
bialgebras”. In: J. Algebra 460 (2016), pp. 1–25. arXiv: 1503.05073.
url: https://doi.org/10.1016/j.jalgebra.2016.04.018.
-
[Ebr02]
-
K. Ebrahimi-Fard.
“Loday-type algebras and the Rota-Baxter relation”. In: Lett. Math.
Phys. 61.2 (2002), pp. 139–147. arXiv: math-ph/0207043. url:
http://dx.doi.org/10.1023/A:1020712215075.
-
[EG06]
-
Kurusch Ebrahimi-Fard and
Li Guo. “Mixable shuffles, quasi-shuffles and Hopf algebras”. In: J.
Algebraic Combin. 24.1 (2006), pp. 83–101. arXiv: math/0506418.
url: http://dx.doi.org/10.1007/s10801-006-9103-x.
-
[EG07]
-
Kurusch Ebrahimi-Fard and Li Guo. “Rota-Baxter algebras
in renormalization of perturbative quantum field theory”. In:
Universality and renormalization. Vol. 50. Fields Inst. Commun.
Providence, RI: Amer. Math. Soc., 2007, pp. 47–105. arXiv:
hep-th/0604116.
-
[EG08a]
-
Kurusch Ebrahimi-Fard
and Li Guo. “Free Rota-Baxter algebras and rooted trees”. In: J.
Algebra Appl. 7.2 (2008), pp. 167–194. arXiv: math/0510266. url:
http://dx.doi.org/10.1142/S0219498808002746.
-
[EG08b]
-
Kurusch Ebrahimi-Fard and Li Guo. “Multiple zeta values and
Rota-Baxter algebras”. In: Integers 8.2 (2008), A4, 18. arXiv:
math/0601558.
-
[EG08c]
-
Kurusch Ebrahimi-Fard and
Li Guo. “Rota-Baxter algebras and dendriform algebras”. In: J. Pure
Appl. Algebra 212.2 (2008), pp. 320–339. arXiv: math/0503647.
url: http://dx.doi.org/10.1016/j.jpaa.2007.05.025.
-
[EP]
-
Kurusch Ebrahimi-Fard and Frederic Patras. Rota-Baxter Algebra.
The Combinatorial Structure of Integral Calculus. arXiv: 1304.1204.
-
[GLS21]
-
Li Guo, Honglei Lang, and Yunhe Sheng. “Integration and
geometrization of Rota-Baxter Lie algebras”. In: Adv. Math.
387 (2021), Paper No. 107834, 34. arXiv: 2009.03492. url:
https://doi.org/10.1016/j.aim.2021.107834.
-
[Guo+]
-
Shuangjian Guo, Yufei Qin, Kai Wang, and Guodong Zhou.
Cohomology theory of Rota-Baxter pre-Lie algebras of arbitrary
weights. arXiv: 2204.13518.
-
[Guo09]
-
Li Guo. “Operated semigroups, Motzkin paths and rooted trees”.
In: J. Algebraic Combin. 29.1 (2009), pp. 35–62. arXiv: 0710.0429.
url: https://doi.org/10.1007/s10801-007-0119-7.
-
[Guo12]
-
Li Guo. An introduction to Rota-Baxter algebra. Vol. 4. Surveys
of Modern Mathematics. International Press, Somerville, MA;
Higher Education Press, Beijing, 2012, pp. xii+226. isbn:
978-1-57146-253-4.
-
[GZ10]
-
Li Guo and Bin Zhang. “Polylogarithms and multiple zeta values
from free Rota-Baxter algebras”. In: Sci. China Math. 53.9 (2010),
pp. 2239–2258. arXiv: 1210.1818. url:
http://dx.doi.org/10.1007/s11425-010-4044-1.
-
[Jia13]
-
Run-Qiang Jian. “From quantum quasi-shuffle algebras to braided
Rota-Baxter algebras”.
In: Lett. Math. Phys. 103.8 (2013), pp. 851–863. arXiv: 1302.4289.
url: https://doi.org/10.1007/s11005-013-0619-4.
-
[Jia14]
-
Run-Qiang Jian. “Construction of Rota-Baxter algebras via Hopf
module
algebras”. In: Sci. China Math. 57.11 (2014), pp. 2321–2328. arXiv:
1307.6966. url: https://doi.org/10.1007/s11425-014-4845-8.
-
[KGP07]
-
Ebrahimi-Fard Kurusch, José M. Gracia-Bondía, and Frédéric
Patras. “Rota-Baxter algebras and new combinatorial identities”. In:
Lett. Math. Phys. 81.1 (2007), pp. 61–75. arXiv: math/0701031.
url: http://dx.doi.org/10.1007/s11005-007-0168-9.
-
[KRY09]
-
Joseph P. S.
Kung, Gian-Carlo Rota, and Catherine H. Yan. Combinatorics: the
Rota way. Cambridge Mathematical Library. Cambridge University
Press, Cambridge, 2009, pp. xii+396. isbn: 978-0-521-73794-4. url:
https://doi.org/10.1017/CBO9780511803895.
-
[Kup99]
-
Boris A. Kupershmidt. “What a classical \(r\)-matrix really is”. In: J.
Nonlinear
Math. Phys. 6.4 (1999), pp. 448–488. arXiv: math/9910188. url:
http://dx.doi.org/10.2991/jnmp.1999.6.4.5.
-
[LG22]
-
Yunnan Li and Li Guo. “Braided Rota-Baxter algebras, quantum
quasi-shuffle algebras and braided dendriform algebras”. In: J.
Algebra Appl. 21.7 (2022), Paper No. 2250134, 25. arXiv:
1901.02843. url: https://doi.org/10.1142/S0219498822501341.
-
[LHB07]
-
Xiuxian Li, Dongping Hou, and Chengming Bai. “Rota-Baxter
operators on pre-Lie
algebras”. In: J. Nonlinear Math. Phys. 14.2 (2007), pp. 269–289.
url: http://dx.doi.org/10.2991/jnmp.2007.14.2.9.
-
[LST21]
-
Andrey Lazarev, Yunhe Sheng, and Rong Tang. “Deformations and
homotopy theory of relative Rota-Baxter Lie algebras”. In: Comm.
Math. Phys. 383.1 (2021), pp. 595–631. arXiv: 2008.06714. url:
https://doi.org/10.1007/s00220-020-03881-3.
-
[LST23]
-
Andrey Lazarev, Yunhe Sheng, and Rong Tang. “Homotopy relative
Rota-Baxter lie algebras, triangular \(L_\infty \)-bialgebras and higher derived
brackets”. In: Trans. Amer. Math. Soc. 376.4 (2023), pp. 2921–2945.
arXiv: 2008.00059. url: https://doi.org/10.1090/tran/8844.
-
[Rot69]
-
Gian-Carlo Rota. “Baxter algebras and combinatorial identities. I,
II”. In: Bull. Amer. Math. Soc. 75 (1969), 325–329; ibid. 75 (1969),
pp. 330–334.
-
[Rot95]
-
Gian-Carlo Rota. “Baxter operators, an introduction”. In:
Gian-Carlo Rota on combinatorics. Contemp. Mathematicians.
Birkhäuser Boston, Boston, MA, 1995, pp. 504–512.
-
[Sem83]
-
M. A. Semenov-Tyan-Shanskiı̆. “What a classical \(r\)-matrix is”. In:
Funktsional. Anal. i Prilozhen. 17.4 (1983), pp. 17–33.
-
[ZGG20]
-
Yi Zhang, Xing Gao, and Li Guo. “Matching Rota-Baxter algebras,
matching dendriform algebras and matching pre-Lie algebras”. In:
J. Algebra 552 (2020), pp. 134–170. arXiv: 1909.10577. url:
https://doi.org/10.1016/j.jalgebra.2020.02.011.
-
[ZL23]
-
Shilong Zhang and Jiefeng Liu. “On Rota-Baxter Lie 2-algebras”.
In: Theory Appl. Categ. 39 (2023), Paper No. 19, 545–566. arXiv:
2203.03403.
|