|
Polytopes from Posets
|
Poset から作られる多面体としては, まず Stanley [Sta86] により定義された chain polytope と order
polytope がある。その変種も色々定義されている。
- chain polytope と order polytope
- marked chain polytope と marked order polytope [ABS11]
- chain-order polytope [Hib+19]
- marked chain-order polytope [FF16]
- enriched order polytope tol enriched chain polytope [OT21]
- signed chain polytope と signed order polytope [BH]
他に目についたものを挙げると, 次のようになる。
- order-chain polytope [HMT17]
- marked order-chain polytope [FF16]
- maximal chain polytope [Oda]
- poset associahedron [Gal24]
- linear order polytope [BKG99; CSS13; EY23]
- partial order polytope [Fio03]
- relative poset polytope [FM24]
References
-
[ABS11]
-
Federico Ardila, Thomas Bliem, and Dido Salazar. “Gelfand-Tsetlin
polytopes and Feigin-Fourier-Littelmann-Vinberg
polytopes as marked poset polytopes”. In: J. Combin. Theory
Ser. A 118.8 (2011), pp. 2454–2462. arXiv: 1008 . 2365. url:
http://dx.doi.org/10.1016/j.jcta.2011.06.004.
-
[BH]
-
Matthias Beck and Max Hlavacek. Signed Poset Polytopes. arXiv:
2311.04409.
-
[BKG99]
-
G. Bolotashvili, M. Kovalev, and E. Girlich. “New facets of the linear
ordering
polytope”. In: SIAM J. Discrete Math. 12.3 (1999), pp. 326–336.
url: https://doi.org/10.1137/S0895480196300145.
-
[CSS13]
-
Ilya Chevyrev, Dominic Searles, and Arkadii Slinko. “On the number
of facets of polytopes representing comparative probability orders”.
In: Order 30.3 (2013), pp. 749–761. arXiv: 1103 . 3938. url:
https://doi.org/10.1007/s11083-012-9274-0.
-
[EY23]
-
Adolfo R. Escobedo
and Romena Yasmin. “Derivations of large classes of facet defining
inequalities of the weak order polytope using ranking structures”. In:
J. Comb. Optim. 46.3 (2023), Paper No. 19, 45. arXiv: 2008.03799.
url: https://doi.org/10.1007/s10878-023-01075-w.
-
[FF16]
-
Xin Fang and Ghislain Fourier. “Marked chain-order polytopes”. In:
European J. Combin. 58 (2016), pp. 267–282. arXiv: 1508.02232.
url: https://doi.org/10.1016/j.ejc.2016.06.007.
-
[Fio03]
-
Samuel Fiorini. “A combinatorial study of partial order polytopes”.
In: European J. Combin. 24.2 (2003), pp. 149–159. url:
https://doi.org/10.1016/S0195-6698(03)00009-X.
-
[FM24]
-
Evgeny Feigin and Igor Makhlin.
“Relative poset polytopes and semitoric degenerations”. In: Selecta
Math. (N.S.) 30.3 (2024), Paper No. 48. arXiv: 2112.05894. url:
https://doi.org/10.1007/s00029-024-00935-5.
-
[Gal24]
-
Pavel Galashin. “\(P\)-associahedra”. In:
Selecta Math. (N.S.) 30.1 (2024), Paper No. 6. arXiv: 2110.07257.
url: https://doi.org/10.1007/s00029-023-00896-1.
-
[Hib+19]
-
Takayuki Hibi, Nan Li, Teresa Xueshan Li, Li Li Mu, and
Akiyoshi Tsuchiya. “Order-chain polytopes”. In: Ars Math.
Contemp. 16.2 (2019), pp. 299–317. arXiv: 1504 . 01706. url:
https://doi.org/10.26493/1855-3974.1164.2f7.
-
[HMT17]
-
Takayuki Hibi, Kazunori Matsuda, and Akiyoshi Tsuchiya.
“Quadratic Gröbner bases arising from partially ordered sets”. In:
Math. Scand. 121.1 (2017), pp. 19–25. arXiv: 1506.00802. url:
https://doi.org/10.7146/math.scand.a-26246.
-
[Oda]
-
Shinsuke Odagiri. Faces of maximal chain polytopes. arXiv: 2108.
11721.
-
[OT21]
-
Hidefumi Ohsugi and Akiyoshi Tsuchiya. “Enriched order polytopes
and enriched Hibi
rings”. In: Eur. J. Math. 7.1 (2021), pp. 48–68. arXiv: 1903.00909.
url: https://doi.org/10.1007/s40879-020-00403-2.
-
[Sta86]
-
Richard P. Stanley. “Two poset
polytopes”. In: Discrete Comput. Geom. 1.1 (1986), pp. 9–23. url:
http://dx.doi.org/10.1007/BF02187680.
|
|